Disassembly sequence planning using a Simplified Teaching-Learning-Based Optimization algorithm
نویسندگان
چکیده
Disassembly Sequence Planning (DSP) is a challenging NP-hard combinatorial optimization problem. As a new and promising population-based evolutional algorithm, the Teaching–Learning-Based Optimization (TLBO) algorithm has been successfully applied to various research problems. However, TLBO is not capable or effective in DSP optimization problems with discrete solution spaces and complex disassembly precedence constraints. This paper presents a Simplified Teaching–Learning-Based Optimization (STLBO) algorithm for solving DSP problems effectively. The STLBO algorithm inherits the main idea of the teach-ing–learning-based evolutionary mechanism from the TLBO algorithm, while the realization method for the evolutionary mechanism and the adaptation methods for the algorithm parameters are different. Three new operators are developed and incorporated in the STLBO algorithm to ensure its applicability to DSP problems with complex disassembly precedence constraints: i.e., a Feasible Solution Generator (FSG) used to generate a feasible disassembly sequence, a Teaching Phase Operator (TPO) and a Learning Phase Operator (LPO) used to learn and evolve the solutions towards better ones by applying the method of precedence preservation crossover operation. Numerical experiments with case studies on waste product disassembly planning have been carried out to demonstrate the effectiveness of the designed operators and the results exhibited that the developed algorithm performs better than other relevant algorithms under a set of public benchmarks. Mass-customized productions, technology updating and shortening lifespan of products in modern societies have resulted in generation of enormous amount of waste products like Waste Electrical and Electronic Equipment (WEEE). Developing technical solutions for sustainable recovery of waste products becomes a global trend. End-of-life recovery options include part reuse, remanufacturing, material recycling, energy recovery and disposal. As shown in Fig. 1, disassembly, which is a systematic method for separating a product into its constituent components and subas-semblies [1], is a critical stage for end-of-life recovery. Finding an optimum or near optimum disassembly sequence is crucial to increasing the efficiency of the disassembly process. Disassembly Sequence Planning (DSP) determines the order in which components are removed from products aiming at minimizing the disassembly time or cost, while considering the disassembly direction, disassembly method, and other attributes of components. DSP has been proved as a NP-hard problem [2] and has been becoming an important but still a challenging research topic in recent years. In the previous research, heuristics and meta-heuristics were used to find near optimum or optimum solutions and generate cost-effective and feasible disassembly sequences. Heuristics include rule-based recursive method [3], graph-based heuristic approach …
منابع مشابه
Operation Sequencing Optimization in CAPP Using Hybrid Teaching-Learning Based Optimization (HTLBO)
Computer-aided process planning (CAPP) is an essential component in linking computer-aided design (CAD) and computer-aided manufacturing (CAM). Operation sequencing in CAPP is an essential activity. Each sequence of production operations which is produced in a process plan cannot be the best possible sequence every time in a changing production environment. As the complexity of the product incr...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کاملOPTIMAL DESIGN OF TRUSS BRIDGES USING TEACHING-LEARNING-BASED OPTIMIZATION ALGORITHM
In this study, teaching-learning-based optimization (TLBO) algorithm is employed for the first time for optimization of real world truss bridges. The objective function considered is the weight of the structure subjected to design constraints including internal stress within bar elements and serviceability (deflection). Two examples demonstrate the effectiveness of TLBO algorithm in optimizatio...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSSES USING TEACHING-LEARNING-BASED OPTIMIZATION
A novel optimization algorithm named teaching-learning-based optimization (TLBO) algorithm and its implementation procedure were presented in this paper. TLBO is a meta-heuristic method, which simulates the phenomenon in classes. TLBO has two phases: teacher phase and learner phase. Students learn from teachers in teacher phases and obtain knowledge by mutual learning in learner phase. The suit...
متن کاملA Discrete Hybrid Teaching-Learning-Based Optimization algorithm for optimization of space trusses
In this study, to enhance the optimization process, especially in the structural engineering field two well-known algorithms are merged together in order to achieve an improved hybrid algorithm. These two algorithms are Teaching-Learning Based Optimization (TLBO) and Harmony Search (HS) which have been used by most researchers in varied fields of science. The hybridized algorithm is called A Di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced Engineering Informatics
دوره 28 شماره
صفحات -
تاریخ انتشار 2014